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ABSTRACT. We introduce a class of Gibbs–Markov random fields built on regular tessellations

that can be understood as discrete counterparts of Arak–Surgailis polygonal fields. We focus first

on consistent polygonal fields, for which we show consistency, Markovianity and solvability by

means of dynamic representations. Next, we develop disagreement loop as well as path creation and

annihilation dynamics for their general Gibbsian modifications, which cover most lattice-based

Gibbs–Markov random fields subject to certain mild conditions. Applications to foreground–

background image segmentation problems are discussed.
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1. Introduction

A classical problem in image analysis is that of segmenting the data into relatively homo-

geneous areas (see, e.g. Rosenfeld & Kak, 1982). It is often the first step in further analy-

sis. Given the centrality of the problem, it is not surprising that a myriad of segmentation

methods have been proposed, both deterministic and stochastic in nature. Indeed, the first

seminal papers in statistical image analysis (Geman & Geman, 1984; Besag, 1986) concerned

this problem. The authors proposed using Markov random fields – sometimes also referred

to as Gibbs distributions or fields – to favour spatially coherent image partitions over more

noisy ones. More precisely, a graph is formed by taking the pixel lattice as vertices, joining

nearby pixels by an edge between them, and assigning high probability to images in which

pixels sharing an edge have similar values. A more recent account of this approach can be

found in the volume edited by Chellapa & Jain (1993), or the textbooks by Gimel’farb (1999)

and Winkler (2003).

The approach described here uses models that operate on the pixel level. Alternative

methods focus on the partition of the image that is the outcome of a segmentation. Green

(1995) and Møller & Skare (2001) propose Voronoi-based models, and Nicholls (1998) suggests

triangulations. In a previous work, Kluszczyński et al. (2005, 2007) advocated the use of

polygonal field models (introduced in a range of papers by Arak et al., 1989, 1991, 1993), an

idea entertained by Clifford & Middleton (1989). In contrast to Markov random fields, the

coloured Arak & Surgailis fields take as starting point not the pixel lattice but the Poisson

line process. Any realization of this process induces a tessellation, which is then coloured.

The boundaries between different-coloured regions form the edges of a graph. Arak &

Surgailis (1989) showed that a careful choice of Hamiltonian for a Gibbs field on the set of
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(admissible) coloured graphs gives rise to consistent polygonal fields that enjoy remarkable

properties which make them eminently suitable for simulation. Building on the concept of

disagreement loops (Schreiber, 2005), Monte Carlo algorithms were developed that allowed

for more global updates than the local ones proposed by Clifford & Nicholls (1994). It was

found that the method was robust with respect to noise and able to capture the topology and

large- or medium-sized image components well and rapidly; fine details may be lost, though,

see Kluszczyński et al. (2005, 2007).

The purpose of the present article is to introduce a class of Gibbs–Markov random fields

that can be understood as discrete counterparts of polygonal fields. Our construction is two-

staged: first a collection of lines inducing a tessellation of the image is fixed, then a polygonal

field is constructed on this tessellation, that is to say, the edges of the field consist of

(possibly multiple) segments of the tessellation and the vertices of the field are a subset of

the collection of nodes of the tessellation. The generic examples of the tessellation-generating

collection of lines are realizations of the Poisson line process as well as the line sets corres-

ponding to the regular planar lattice, but it is important to stress that these are not the only

valid choices. One may for instance pre-process the image to extract the lines across which

the (absolute) gradient flux is particularly high. Not every line is equally desired to turn up

in the final segmentation. This is taken into account by ascribing a likelihood parameter to

each line, reflecting the potential utility of the line in segmentation. For example, lines in

dense regions may be down-weighted to give sparse regions a fair chance; alternatively, after

pre-processing, the image gradient may guide the choice of weight. As in our previous work,

Kluszczyński et al. (2005, 2007), the regions of the tessellation are coloured so that the poly-

gonal boundaries of the field coincide with the interfaces separating different colours. Thus,

the edges of the field are the maximal linear segments that form the boundaries between

different coloured regions, whereas the field vertices are the intersection points between these

boundary segments. Note that each edge of the field may contain many tessellation nodes,

that is, intersection points of the tessellation lines.

The analogy with continuum polygonal Markov fields is exploited to define Hamiltonians

that are such that desirable properties of these processes (consistency, Markovianity, explicit

expressions for the partition function) can be carried over to the discrete context. Moreover,

the analogy gives rise to new attractive sampling schemes complementing the usual local

Gibbs and Metropolis methods employed for Gibbs fields on finite graphs.

The plan of this article is as follows. In section 2, we construct a family of admissible

coloured polygonal configurations built on regular tessellations, and introduce the concept of

a discrete polygonal field. The special class of consistent polygonal fields is treated in detail

in section 3 with emphasis on its dynamic representation. Invariant birth and death process

dynamics for such consistent polygonal fields are derived in section 4 exploiting the notion

of a disagreement loop. A simple modification for general polygonal fields is the topic of sec-

tion 5. More general dynamics are introduced in section 6 which lead naturally to the path

creation and annihilation dynamics that form the topic of section 7. In section 8, the image

analysis task of foreground–background separation is recast as a statistical inference problem

for a discrete polygonal field model. Examples are presented in section 9. We conclude with

a critical discussion of our approach and indicate some topics that merit further research.

2. Polygonal fields on regular linear tessellations

By a regular linear tessellation of the plane we shall understand a countable family T of

straight lines in R
2 such that no three lines of T intersect at one point and such that a

bounded subset of R
2 is hit by at most a finite number of lines from T, that is to say, T is
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locally finite. Even though we will admit T random in the sequel, it is assumed to be deter-

ministic in this section, an assumption that does not lead to any loss of generality because

in case of random T the construction below can be verbatim repeated realization-wise.

For a bounded open convex set D⊆R
2 the tessellation T induces a partition of D into a

finite collection DT of regions of polygonal shapes, possibly chopped off by the boundary.

Next, we shall always assume that ∂D contains no nodes of T, defined here as intersection

points of lines from T . We shall also require that the intersection of each l ∈ T with ∂D

consists of exactly two points, that is, there are no segments of ∂D along lines of T . Consider

the set ĈD(T ) of all possible colourings of the regions in DT into black and white enjoying

the additional property that two regions of the same colour can share a node only if either

they share a segment or there is a third region of the same colour sharing segments with both

of them. In other words, there are no regions of the same colour connected only by corners.

The family CD(T ) of admissible polygonal configurations in D built on T is defined to consist

of all planar graphs c in D̄ :=D ∪∂D arising as interfaces between black and white regions

of colourings ĉ∈ ĈD(T ). Note that in the sequel we shall consistently use the ·̂ notation for

coloured elements of ĈD(T ) whereas omitting the ˆ will stand for the corresponding colourless

contour configuration in CD(T ). Observe that the family CD(T ) could equivalently be defined

to consist of all planar graphs c in D∪∂D such that

• all edges of c lie on the lines of T ,

• all interior vertices of c, that is, those lying in D, are of degree 2,

• all boundary vertices of c, that is, those lying on ∂D, are of degree 1,

see also Arak & Surgailis (1989). In other words, the elements of CD(T ) are collections of

disjoint polygonal contours built on T , possibly nested and possibly chopped off by the

boundary. Note that by an edge of c we mean a maximal union of connected co-linear

tessellation segments in c, likewise by a vertex of c we mean a point where two edges of

c meet (interior vertex) or where an edge of c meets the boundary ∂D (boundary vertex).

Thus, the nodes of T lying in the interior of edges of c are not considered as vertices of

c, likewise the segments of T which are not maximal in c are not edges of c. To avoid

possible ambiguities in the sequel, we shall always use the notions of vertices and edges in the

context of the polygonal configurations built on T , whereas the respective terms nodes and

segments will be reserved for T . When discussing the relations between polygonal fields and

general Gibbs fields next, we will also need a notation for the state space of the latter, which

is X̂D(T ), standing for the collection of all possible black–white colourings of DT without

the additional requirement of having no corner-only connections. The corresponding family

XD(T ) of colour-blind contour collections is a superset of CD(T ), as it also admits interior

vertices of degree 4.

A reader aware of the original Arak & Surgailis (1989) continuum formalism might wonder

at this point why we admit here co-linear edges of graphs c ∈ CD(T ), which corresponds

to situations where a linear section of c ∈ CD(T ) along l ∈ T is a union of disjoint edges,

forbidden in the Arak and Surgailis’ set-up. Paradoxically, the answer is that this is aimed at

ensuring the Markov property of the field, which is the same reason for which such situations

were excluded in the continuum setting. A solution to this apparent paradox lies in crucial

differences between the continuum and discrete set-ups.

• In the continuum Arak & Surgailis (1989) set-up, forbidding multiple disjoint edges

along the same line does not introduce any long-range dependencies because even

though the edges far away should avoid the lines already used , the measure of these

forbidden lines is anyway zero and thus the exclusion is not effectively felt by the field.

In contrast, any co-linear edge would have to arise as a result of a mechanism introducing
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long-range dependencies because the local field-generating rules proposed by Arak &

Surgailis yield co-linearity with probability zero.

• In contrast to this, in our discrete setting exclusion of co-linear edges would lead to a

situation where the forbidden lines would be felt in arbitrary distance from the corres-

ponding edges, thus obviating the Markovianity of the field in any reasonable sense.

However, in the discrete set-up there do exist local mechanisms producing co-linear

edges with positive probabilities.

In particular, it should be emphasized in this context that the tessellation-based poly-

gonal fields constructed in this article, although analogous to the Arak–Surgailis fields, are

not versions thereof conditioned on having their edges on the lines of T – in fact, such a

conditioning would yield a non-Markovian field, owing to the presence of forbidden lines as

discussed before. Note that these remarks are only meant to compare our setting with the

original Arak and Surgailis continuum framework, and will not be referred to in the sequel

of this article.

Assume now that fixed activity/probability parameters pl ∈ (0, 1) are ascribed to the straight

lines l ∈T . The term probability parameter is used here to reflect the interpretation of pls in

terms of probabilities of creating an edge along l, as made precise next, thus in particular no

requirement of pls summing up to one is imposed. For a function HD : ĈD(T ) 7→R∪{+∞}
the (discrete) polygonal field ÂHD

with Hamiltonian HD is defined to be the random element

in ĈD(T ) such that

P(ÂHD
= ĉ)=

exp(−HD(ĉ))
∏

e∈E(c) pl[e]

Z[HD]
, (1)

where E(c) stands for the collection of edges of c considered here to be open, that is, not

to contain their vertices, for formal convenience next, whereas l[e] ∈ T is the straight line

containing e, and

Z[HD] :=
∑

ĥ∈ĈD(T )

exp(−HD(ĥ))
∏

e∈E(h)

pl[e] (2)

is the corresponding partition function. In other words, the probability of seeing some

ĉ ∈ ĈD(T ) as the realization of ÂHD
is proportional to the Boltzmann factor exp(−HD(ĉ))

times the product of probabilistic costs pl[e] of creating its edges. In particular, under fixed

Hamiltonian, putting pls low for one family of lines, say L1, and setting pls high over some

other family L2 of lines, amounts to promoting field edges along the lines of L2 while

penalizing edge creation along lines from L1.

Recalling that the Gibbs field ĜWD
on X̂D(T ) with Hamiltonian WD : X̂D(T ) 7→R∪{+∞}

is given by

P

(

ĜWD
= ĉ
)

=
exp(−WD(ĉ))

∑

ĥ∈X̂D(T ) exp(−WD(ĥ))
, (3)

we easily see that the polygonal field ÂHD
coincides in law with ĜWD

regarded as a ĈD(T )-

valued random element for

WD(ĉ) :=

{

HD(ĉ)−∑e∈E(c) log pl[e], ĉ∈ ĈD(T ),

+∞, otherwise.
(4)

Thus, all polygonal fields on T are Gibbs fields and a vast class of Gibbs fields, namely those

concentrated on ĈD(T ), admit a representation as polygonal fields. In spite of this apparent

redundancy in definitions there are good reasons for considering the notion of a discrete

polygonal field though, one of them being that, unlike (3), the definition (1) admits a natural

continuum version and in fact it is the continuum set-up where it has originally arisen, see
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Arak (1982), Arak & Surgailis (1989) and Arak et al. (1993). It should also be emphasized

that for suitable natural choices of Hamiltonian in (1) the resulting field exhibits striking

properties, as will be discussed in section 3. There is another important reason for introducing

(1), however, which is crucial for the purposes of the present article: there are simulation

techniques available for continuum polygonal fields, see Schreiber (2005) and Kluszczyński

et al. (2007), whose discrete adaptations can be used to provide new attractive simulation

algorithms for discrete Gibbs fields. In the context of image segmentation, the Hamiltonian

will include terms that quantify how well a coloured contour collection describes the data (see

section 8). To proceed with the presentation of these ideas, we shall begin with a discussion

of the so-called consistent polygonal fields and their dynamic representations in section 3.

To complete the present section, we remark that formula (1) can be regarded as the

discrete equivalent of the line-based representation for polygonal fields as developed in Arak

& Surgailis (1989). It is natural to ask whether an alternative point-based representation in

the spirit of Arak et al. (1993) is available as well. This is indeed the case, but, unlike in

the continuum set-up, this alternative representation arises by a simple re-arrangement of

the line-indexed product
∏

e∈E(c) pl[e] as (
∏

v(l1 , l2)∈V (c)∩D

√
pl1

pl2
)(
∏

v(l)∈V (c)∩∂D

√
pl ) with v(l1, l2)

standing for vertices of c falling into D and arising at the intersection of lines l1, l2 ∈T and

with v(l) ranging through boundary vertices of c in ∂D lying on l ∈T . Thus, in sharp contrast

to the continuum case, the point-based representation here does not seem to offer a relevant

alternative to the line-based setting.

3. Consistent polygonal fields on regular tessellations

In the seminal papers Arak (1982) and Arak & Surgailis (1989), it was observed that for

some particular choices of the Hamiltonian the corresponding polygonal fields enjoy remark-

able properties which make them very well suited for simulation – these special processes are

the so-called consistent polygonal fields. In the present section, we shall adopt to the discrete

case of polygonal fields on regular tessellations the argument of Arak and Surgailis originally

developed mainly in the continuum setting (with some exceptions though, see, e.g. model D

in Surgailis, 1991).

To proceed, consider the Hamiltonian

UD(ĉ) :=−
∑

e∈E(c)

∑

l∈T , l 6∼e

log(1−pl )+
∑

n(l1 , l2)∈c

log(1−pl1
pl2

), ĉ∈ ĈD(T ), (5)

with n(l1, l2)∈ c ranging through all nodes of the tessellation T arising as intersection points

of l1, l2 ∈T and lying on c, that is to say, either lying on the edges of c or coinciding with

one of its vertices. Here and in the sequel, l 6∼ e means that the line l intersects e but is not

co-linear with it. The polygonal field ÂUD
is a consistent polygonal field in the sense made

precise by theorem 1.

Theorem 1

The polygonal field ÂUD
with Hamiltonian UD enjoys the following properties:

Consistency: For bounded open convex D′ ⊆ D ⊆ R
2, the field ÂUD

∩ D′ coincides in law with

ÂUD′ . By increasing D↑R
2 this allows us to construct the whole plane extension of the process

ÂU such that ÂUD
coincides in law with ÂU ∩D for all bounded open convex D⊆R

2.

Linear sections: For a straight line l containing no nodes of T, the intersection points and inter-

section directions of l with the edges of the polygonal field ÂU coincide in distribution with
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the intersection points and directions of l with the line field KT defined to be the random sub-

collection of T where each straight line l∗ ∈T is chosen to belong to KT with probability pl∗ /

(1+pl∗ ) and rejected otherwise, and all these choices are made independently.

Solvability: An explicit formula is available for the partition function:

Z[UD]=2

(

∏

n(l1 , l2)∈D

(1−pl1
pl2

)

)−1(
∏

l∈T , l∩D 6=∅

1

(1+pl )

)−1

. (6)

Markov property: For a smooth closed curve h⊂R
2 containing no nodes of T, the conditional

distribution of ÂU in the interior of h depends on the configuration outside h only through the

intersection points and intersection directions of h with the edges of the polygonal field and

through the colouring of the field along h.

Proof. The proof of theorem 1 is based on the so-called dynamic representation for

consistent polygonal fields, being a discrete version of and constructed in full analogy with

the corresponding representation in sections 4 and 5 in Arak & Surgailis (1989). The idea

underlying this construction is to represent the considered polygonal field in terms of the

equilibrium evolution of a one-dimensional particle system tracing the polygonal boundaries

of the field in two-dimensional time-space. To this end, we interpret the open convex domain

D as a set of time-space points (t, y) ∈ D, with t ∈ R referred to as the time coordinate and

with y ∈R standing for the spatial coordinate of a particle at the time t. In this language, a

straight line segment in D stands for a piece of the time-space trajectory of a freely moving

particle. For a straight line l non-parallel to the spatial axis and crossing the domain D we

define in the obvious way its entry point to D, in(l, D)∈∂D, and its exit point, out(l, D)∈∂D.

Without loss of generality we assume that no line of T is parallel to the spatial axis, possibly

rotating the coordinate system if this is not the case.

We choose the time-space birth sites for the new particles by independently placing a birth site

• at each node n(l1, l2) of the tessellation T falling into D, with probability pl1
pl2

(interior

birth site),

• at each entry point in(l, D) of lines l ∈T into D, with probability pl /(1+pl ) (boundary

birth site).

Each interior birth site n(l1, l2) emits two particles moving with initial velocities such that

the initial segments of their trajectories lie on the lines l1 and l2 of the tessellation going out

from the birth site, unless another particle previously born hits the site in which case the

birth does not occur. Note that this prevents creation of degree 3 and degree 4 vertices in

the resulting graph. Each boundary birth site in(l, D) emits a single particle moving with the

initial velocity such that the initial segment of its trajectory lies on l (no precaution similar

to the one for interior birth sites before is present because boundary birth sites cannot be hit

by previously born particles). All the particles evolve independently in time according to the

following rules:

(E1) Between the critical moments listed next, each particle moves with constant velocity

so that dy = v dt with v standing for the actual velocity.

(E2) When a particle touches the boundary ∂D, it dies.

(E3) In case of a collision of two particles (equal spatial coordinates y at some moment

t with (t, y)∈D), both of them die.

(E4) Whenever a particle moving in time-space along l1 ∈ T reaches a node n(l1, l2), it

changes its velocity so as to move along l2 with probability pl2
, and keeps moving

along l1 otherwise.
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The claim constituting the core of the proof is that the union of the time-space trajectories

traced by the particles of the aforegiven system coincides in distribution with the contour

ensemble AUD
of the polygonal field ÂUD

, whereas the law of the field itself is recovered by

picking one of the two possible black–white colourings at random with probability 1/2. To

verify this statement we choose some ĉ∈ ĈD(T ) and compute the probability that the colour-

blind contour ensemble c is traced by the previous particle system. To this end, we observe

the following.

• Each edge e∈E(c) whose initial (lower time coordinate) vertex lies on ∂D yields a factor

pl[e]/(1+pl[e]) (boundary birth site) times
∏

l∈T , l 6∼e(1−pl ) (no velocity updates along e).

• Each of the two edges e1, e2 ∈E(c) stemming from a common interior birth site n(l1, l2)

yields a factor pli , i =1, 2 (coming from the birth probability) times
∏

i

∏

l∈T , l 6∼ei
(1−pl )

(no velocity updates along ei).

• Each of the edges e∈E(c) arising owing to a velocity update of a particle yields a factor

pl[e] (velocity update probability) times
∏

l∈T , l 6∼e(1−pl ) (no velocity updates along e).

• The absence of birth sites in nodes n(l1, l2) of T in D not belonging to c yields the

factor
∏

n(l1 , l2)∈D\c(1−pl1
pl2

) (note that birth sites are allowed in all points of c – either

they give rise to particles tracing c or are discarded if hit by a previously born particle).

• The absence of boundary birth sites at those entry points to D of lines of T which do

not give rise to an edge of c yields the factor
∏

l∈T , l∩D 6=∅,in(l,D)6∈c
(1+pl )

−1.

Putting these factors together allows us to evaluate the probability of c being traced by the

particle system to

(

∏

e∈E(c)

pl[e]

)(

∏

e∈E(c)

∏

l∈T , l 6∼e

(1−pl )

)(

∏

n(l1 , l2)∈c

(1−pl1
pl2

)

)−1(
∏

n(l1 , l2)∈D

(1−pl1
pl2

)

)

×
(

∏

l∈T , l∩D 6=∅

1

1+pl

)

=
2 exp(−UD(ĉ))

Z[UD]

∏

e∈E(c)

pl[e] (7)

with Z[UD] given by (6). Taking into account that the choice between the two possible colour-

ings of the field is made with probability 1/2, independently of c, we see that the probability

of obtaining ĉ as the outcome of the particle system evolution is exactly

exp(−UD(ĉ))

Z[UD]

∏

e∈E(c)

pl[e],

and hence the resulting polygonal field coincides in law with ÂUD
as required – this fact will

be referred to as the dynamic representation for the polygonal field ÂUD
in the sequel. The

Solvability statement (6) follows from this as well. The remaining properties follow in full

analogy with the corresponding argument in Arak & Surgailis (1989), whence we only provide

a brief discussion in the following. First, the Markov property stated before is a direct

consequence of the Gibbsian definition of ÂUD
, whereas the Linear sections statement will

follow from the form of the boundary birth mechanism described before as soon as we estab-

lish the remaining Consistency property. To this end, choose a bounded open convex set

D ⊆R
2 and a straight line l intersecting D, and define D′ to be the set of points of D lying

to the left of l (lower time coordinates). Clearly then, from the dynamic representation we

conclude the Consistency statement for so chosen D and D′. Noting that the dynamic

representation is equally available upon rotating the time-space coordinate system, we see

that the Consistency holds as well upon cutting off the part of the set D lying to the left of

l. This means however that the consistency holds upon cutting off pieces of the original set

with arbitrary straight lines – a repetitive use of this procedure and a possible passage to
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Fig. 1. A typical realization of the consistent field on a Poisson line tessellation.

the limit allows us to carve from D any arbitrary convex subset. This proves the Consistency

claim and completes the proof of theorem 1.

We conclude this section by remarking that, as seen from the Linear sections statement

of theorem 1, the probability that a given edge e is present in the field AUD
is pl[e]/(1+pl[e]),

which does not exceed 1/2. This may seem bizarre at the first look, as increasing pl[e] towards

1 would suggest maximizing the probability of edge occurrence at e. Upon a second look,

though, it is readily seen that this fact is because of the exclusion of X-shaped nodes in the

definition of CD(T ), which prevents the maximum obtainable edge density from exceeding

1/2.

A typical realization of the consistent polygonal field on a homogeneous Poisson line

tessellation is shown in Fig. 1.

4. Disagreement loop birth and death dynamics for consistent polygonal fields

A crucial concept next will be that of a disagreement loop, borrowed from Schreiber (2005),

section 2.1. This arises from the dynamic construction of the polygonal fields as provided

by the evolution rules (E1–4) and the corresponding birth rules specified in the proof of

theorem 1 before.

Suppose that we observe a particular realization c∈CD(T ) of the colourless contour en-

semble AUD
and that we modify the configuration by adding an extra birth site x0 to the

existing collection of birth sites for c arising in the dynamic representation, while keeping

the evolution rules (E1–4) for all the particles, including the two newly added ones if x0 is

an interior birth site and the single newly added one if x0 is a boundary birth site. Denote the

resulting new random (colourless) polygonal configuration by c⊕ x0. A crucial observation

is that, under appropriate coupling of the dynamics of newly added particles with that of the

previously existing ones along their sub-trajectories annihilated owing to the creation of new

particles, for an interior birth site x0 the symmetric difference c△[c⊕ x0] is almost surely a

single loop (a closed polygonal curve), possibly self-intersecting and possibly chopped off by

the boundary. Likewise, under the same coupling, the symmetric difference c△[c ⊕ x0] for

boundary x0 is almost surely a single polygonal path with no self-intersections. We describe
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this coupling next. It should be noted that for formal convenience we assume that a polygonal

configuration c comes together with the knowledge of all attempted birth sites discarded

during its creation.

If x0 happens to lie on c, the new birth attempt gets immediately discarded, yielding

c△[c ⊕ x0]=∅. Apart from this degenerate case, the leftmost point of the loop c△[c ⊕ x0]

is of course x0. Each of the two new particles p1, p2 emitted from x0 move independently,

according to (E1–4), each giving rise to a disagreement path. The initial segments of such a

disagreement path correspond to the movement of a particle, say p1, before its annihilation in

the first collision. If this is a collision with the boundary, the disagreement path gets chopped

off and terminates there. If this is a collision with a segment of the original configuration c

corresponding to a certain old particle p3, the new particle p1 dies but the disagreement path

continues along the part of the trajectory of p3 which is contained in c but not in c ⊕ x0.

A particular case may happen when the collision occurs with a birth site in c, where one of

the two particles born (denote it by p3) gets annihilated, whereas the evolution of the second

one is re-used under our coupling to yield the extension of the evolution of p1 – we do so

instead of annihilating both particles emitted from the birth site and building the extension

of the evolution of p1 anew. The choice of the annihilated and surviving particles upon such

a collision at a node n(l1, l2) with the current direction of p1 being l1 is made as follows: with

probability (1 − pl2
) we annihilate the particle moving along l2 (no velocity update for p1)

and with probability pl2
we annihilate the particle moving along l1 (p1 undergoes a velocity

update). Clearly, this is consistent with the dynamic representation. Thus, we note that under

the so-constructed coupling p1 always moves according to the usual evolution rules (E1–4)

because the particles emitted by the hit birth site did so. At some further moment p3 dies itself

in c, touching the boundary or killing another particle p4 in c. In the second case, however,

this collision only happens for c and not for c ⊕ x0, so the particle p4 survives (for some

time) in c⊕x0 yielding a further connected portion of the disagreement path for p1, which is

contained in c ⊕ x0 but not in c. Likewise, it may happen that p3 reaches a node n(l1, l2)

where a birth attempt was made in c but was discarded because of the presence of p3. Now

that p3 is absent in c⊕ x0, this birth does occur for c⊕ x0. We require in our coupling that

one of the emitted particles follow the remaining trajectory of p3 in c, thus re-using for

the new particle the random choices made before for p3. Clearly, the second particle

emitted by the birth site denoted by p4 as before, adds one further sub-portion of the

disagreement loop in [c ⊕ x0] \ c. Again, the particle evolving according to the previous

trajectory of p3 moves in accordance with all the rules of the dynamic representation because

so did p3.

A recursive continuation of this construction shows that the disagreement path initiated by

p1 consists alternately of connected polygonal sub-paths contained in [c⊕ x0] \ c (call these

positive parts) and in c\ [c⊕x0] (call these negative parts). Note that this disagreement path is

self-avoiding and, in fact, it can be represented as the graph of some piecewise linear function

t 7→ y(t). Clearly, the same applies for the disagreement path initiated by the second initial

particle p2. An important observation is that whenever two positive or two negative parts of

the two disagreement paths hit each other, both disagreement paths may die at this point

and the disagreement loop may close (as opposed to intersections of segments of distinct

signs which do not have this effect). Obviously, if the disagreement loop does not close in

this way, it gets eventually chopped off by the boundary. Note that upon the intersection of

two positive or negative sub-paths at a node v, instead of getting killed, a disagreement loop

may also continue owing to the alteration of the status of a birth site, should it occur at v.

Indeed, for negative sub-paths a birth site previously discarded may be reactivated, whereas

for positive sub-paths a birth site may be inactivated.
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We shall write D
⊕[x0; c]= c△[c⊕x0] to denote the (random) disagreement loop constructed

before. It remains to consider the case of x0 being a boundary birth site, which is much

simpler because there is only one particle emitted and so, under our coupling, D
⊕[x0; c]=

c△[c ⊕ x0] is easily seen to be a single self-avoiding polygonal path eventually chopped off

by the boundary. We abuse the language and call such D
⊕[x0; c] a (degenerate) disagreement

loop as well.

Likewise, a disagreement loop arises if we remove one birth site x0 from the collection of

birth sites of an admissible polygonal configuration c∈CD(T ), while keeping the evolution

rules for all the remaining particles. We write c⊖x0 for the configuration obtained from c by

removing x0 from the list of the birth sites, while the resulting random disagreement loop is

denoted by D
⊖[x0; c], so that D

⊖[x0; c]= c△[c⊖ x0]. Note that again an empty disagreement

loop may occur, should we annihilate a birth site where the birth attempt was discarded

owing to the presence of previously created particles. We refer the reader to Schreiber (2005)

for further formal details of the disagreement loop concept.

With this terminology we are in a position to describe random dynamics on the coloured

configuration space ĈD(T ) which leave invariant the law of the polygonal field ÂUD
.

Particular care is needed, however, to distinguish between the notion of time considered in the

dynamic representation of the polygonal field as well as throughout the construction of the

disagreement loops above, and the notion of time to be introduced for the random dynamics

on ĈD(T ) constructed below. To make this distinction clear we shall refer to the former as the

representation time (r-time for short) and shall keep for it the notation t, whereas the latter

will be called the simulation time (s-time for short) and will be denoted by s in the sequel.

Consider the following pure jump birth and death type continuous time Markovian (DL)

dynamics on ĈD(T ).

DL:birth: At each x :=n(l1, l2) ∈ D, l1, l2 ∈ T , with intensity pl1
pl2

ds set cs +ds := cs ⊕ x

(interior births), then construct ĉs +ds by randomly choosing, with probability 1/2, either

of the two possible colourings for cs +ds. Proceed likewise at each x := l ∩∂D, l ∈T , with

intensity pl /(1+pl ) ds (boundary births).

DL:death: For each interior and boundary birth site x in cs, with intensity 1 set cs +ds :=

cs ⊖ x, then construct ĉs +ds by randomly choosing, with probability 1/2, either of the

two possible colourings for cs +ds.

If none of these updates occurs, we keep ĉs +ds
= ĉs. It is convenient to perceive these dynamics

in terms of generating random disagreement loops k and setting cs +ds := cs△k, with the loops

of the type D
⊕[·; ·] corresponding to the rule DL:birth and D

⊖[·; ·] to the rule DL:death.

As a consequence of the dynamic representation developed in the proof of theorem 1 we

obtain proposition 1.

Proposition 1

The distribution of the consistent polygonal field ÂUD
is the unique invariant law of the dynamics

given by DL:birth and DL:death. The resulting stationary process is reversible. Moreover, for

any initial distribution of ĉ0 the laws of the random polygonal fields ĉs converge in variational

distance to the law of ÂUD
as s →∞.

Proof. To establish the invariance, we note first that the DL dynamics is easily seen to

preserve the Bernoulli law imposed by the dynamic representation on the collection of birth

sites of the process (including the birth attempt sites discarded owing to the incidence with

previously born particles). Moreover, the DL dynamics is explicitly constructed so as to
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ensure that if the original configuration is traced by particles evolving according to the rules

of the dynamic construction and emitted from the given collection of birth sites, then so is

the updated configuration, with the accordingly updated collection of birth sites. This ensures

the required invariance. Alternatively, a direct detailed balance check can also be made, for

instance in analogy to section 6 in Schreiber (2008), see especially subsection 6.4 there, where

direct balance calculations are made in a very general continuum set-up.

The reversibility of the dynamics follows from the obvious reversibility of the birth site

birth and death process. To see this, assign to each birth site (including the discarded birth

attempts) the (random) sequence of velocity update choices to be made in the course of

evolution of the particles it emits (would emit), which corresponds to the full knowledge of

the (unlimited) particle evolution. This makes birth sites into birth packages, algorithmically

representable, for example, by assigning to each birth site the corresponding seed for random

number generation. Thus, we end up with a random collection of birth packages containing

all the randomness of the field, that is to say, fully determining the resulting field now obtain-

able by a deterministic procedure. For definiteness, we assume that if a particle passes on its

way a birth site, which thus becomes inactivated, starting from the next evolution step after

this event the particle evolves further according to the birth package of the just inactivated

birth site rather than according to its own. Now, in this context it is easy to check that the

reverse move to adding a birth package at x0 is removing the same birth package at x0 and

vice versa, that is to say [c ⊕ x0] ⊖ x0 ≡ c and [c ⊖ x0] ⊕ x0 ≡ c with x0 carrying always the

same birth package. This ensures the reversibility under the aforegiven birth package inter-

pretation. To get the required reversibility for polygonal configurations not containing the

full knowledge of entire birth packages (unnecessarily determining the unlimited extension

of the trajectories of annihilated particles as if they were to survive forever) it is now enough

to integrate out the spurious components of birth packages.

The uniqueness and convergence statements in proposition 1 require a short justification

as well. They both follow from the observation that, in finite volume, regardless of the initial

state, the process ĉs spends a non-null fraction of time in the state ‘black’ (no contours, the

whole domain D coloured black). Indeed, this observation allows us to conclude the required

uniqueness and convergence by a standard coupling argument, for example, along the lines

of the proof of theorem 1.2 in Liggett (1985).

5. Disagreement loop birth and death dynamics for general polygonal fields

Take now a general polygonal field ÂHD +UD
with a Hamiltonian HD +UD : ĈD(T )→R as in

(1). Consider the following modification of the basic (DL) dynamics constructed previously

in section 4:

DL[H]:birth: At each x :=n(l1, l2)∈D, l1, l2 ∈T , with intensity pl1
pl2

ds, set ds +ds := cs ⊕x,

whereupon construct d̂ by choosing with probability 1/2 one of the two possible colour-

ings for d. Then, with probability min(1, exp[HD(ĉs)−HD(d̂)]), put ĉs +ds := d̂, otherwise

keep ĉs +ds := ĉs. Proceed likewise at each x := l ∩∂D, l ∈T , with intensity pl /(1+pl ) ds.

DL[H]:death: for each interior and boundary birth site x in cs, with intensity 1 · ds, set

d := cs ⊖x, whereupon construct d̂ by choosing with probability 1/2 one of the two pos-

sible colourings for d. Then, with probability min(1, exp[HD(ĉs)−HD(d̂)]), put ĉs +ds := d̂,

otherwise keep ĉs +ds := ĉs.

In other words, the original dynamics DL are used to propose a new configuration d̂, which

is then accepted with probability min(1, exp[HD(ĉs) −HD(d̂)]), and rejected otherwise. By a
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straightforward verification of the detailed balance conditions and an appeal to proposition

1, we obtain the following result, theorem 2.

Theorem 2

The distribution of the polygonal field ÂHD +UD
given by (1) is the unique invariant law of

the dynamics described by DL[H]:birth and DL[H]:death. The resulting stationary process is

reversible. Moreover, for any initial distribution of ĉ0, the laws of the random polygonal fields

ĉs converge in variational distance to the law of ÂHD +UD
as s →∞.

6. Generalized dynamic representation for consistent polygonal fields

The dynamic construction of consistent polygonal fields borrowed from Arak & Surgailis

(1989) and adapted for tessellation-based fields in the proof of theorem 1 can be regarded

as revealing increasing portions of the polygonal field in the course of time flow. Under this

interpretation, with probability 1 the portion of a polygonal field in a bounded open convex

domain D uncovered by time t is, upon closure, precisely the closure of its intersection with

Dt = D̄ ∩ (−∞, t] × R. The idea underlying our generalized dynamic representation developed

in the present section in the following, and constituting a discrete counterpart of the con-

tinuum generalized representation in section 4 of Schreiber (2008), is to replace the family

Dt by some other time-increasing family of subsets of D, also denoted by Dt in the sequel,

eventually covering the whole D, and to try to provide a natural construction of the polygonal

field being gradually uncovered on the growing domain Dt in the course of time flow. We shall

always assume that Dt is convex, for otherwise we would have to deal with situations where

two or more disconnected parts of an edge of the field have been revealed, which leads to

unwanted dependencies along the segments connecting these parts. Taking this into account,

and having formal convenience in mind, we impose the following natural assumptions on

Dt, t ∈ [0, 1],

• (Dt)t∈[0,1] is an increasing family of compact convex subsets of D̄=D∪∂D,

• D0 is a single point x in D̄=D∪∂D,

• D1 coincides with D̄,

• Dt is continuous in the usual Hausdorff metric,

• For each l ∈ T the intersection l ∩ Dsl
consists of exactly one point A(l), where

sl := inf{t ∈ [0, 1], Dt ∩ l 6=∅}. Moreover, A(l) is not a node of T .

The condition requiring that D0 be a singleton can be easily weakened, in fact it is enough

if D0 be a linear segment, yet this requires certain technical changes in the dynamics below

without providing essential generalizations and hence we do not discuss this option here.

The point A(l) will be referred to as the anchor point for l; this induces the anchor mapping

A : T → D̄. Note that the so-defined growing window Dt introduces a natural notion of time

over the field domain D̄, where the time mark of a point x ∈ D̄ is given as the first moment

where D̄t hits x. Unlike in the standard dynamic representation discussed in the proof of

theorem 1 though, in general there can be no definite and fixed time flow direction here as the

time flow geometry can change over time. Consider now the following dynamics in continuous

time t ∈ [0, 1], with all updates given by the following rules performed independently of each

other and with dt standing for an infinitesimal time increment.

(GE:Initialise) Begin with an empty field at time 0.

(GE1) Between critical moments listed next, during the time interval [t, t +dt],

the field lines in Dt hitting ∂Dt extend straight to Dt +dt \Dt.
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(GE2) When a field line hits the boundary ∂D, it stops growing in this direction

(recall that ∂D contains no segments along lines of T and so the inter-

section of a field line with ∂D consists of at most two points).

(GE3) When two field lines intersect in Dt +dt \ Dt, they are not extended any

further beyond the intersection point (stop growing in the direction marked

by the intersection point).

(GE4) Whenever a node n(l1, l2), l1, l2 ∈T , falls into Dt +dt \Dt, and l1 is a current

field line hitting ∂Dt, with probability pl2
we update the direction of the

line to l2, extending away from the anchor point A(l2). We keep the

previous direction along l1 otherwise. Should several such vertices belong

to Dt +dt \Dt, the direction updates are performed independently.

(GE:LineBirth) Whenever an anchor point A(l), l ∈ T , falls into Dt +dt \ Dt, with proba-

bility pl /(1+pl ) a new field line l is born at A(l), extending in both

directions if possible.

(GE:VertexBirth) Whenever a node n(l1, l2), l1, l2 ∈T , falls into Dt +dt \ Dt, with probability

pl1
pl2

two new field lines l1 and l2 are born, each extending in the direction

away from its anchor point, unless another field line present at time t hits

n(l1, l2) in which case the birth does not occur.

It is worth noting that if we choose the family Dt so that Dt := D̄∩ (−∞, (1− t)xmin + txmax]×R,

where xmin and xmax are the minimal and maximal x-coordinates of points in D (assume that

D̄ contains exactly one point with x-coordinate xmin for formal convenience), the generalized

dynamic representation (GE) coincides with the original Arak and Surgailis’ one determined

by rules (E1–4) and we have A(l)= in(l, D) where in(l, D) is the entry point of l into D as

considered in the proof of theorem 1 before; that is to say the point of l ∩ D̄ with the minimal

x-coordinate.

It should be emphasized at this point that the geometry of the growing window Dt deter-

mines the field-generating dynamics only through the induced order in which the tessellation

nodes and segments are revealed, whereas the probabilities of the corresponding critical events

(directional updates and line and vertex births) are not affected. This is because of the fact

that these critical events can only occur at the deterministic moments where Dt hits a new

node or segment, which stands in contrast to the continuum case discussed in section 4

of Schreiber (2008), where the critical events could occur at any time moment with rates

essentially depending on the evolution of Dt.

In analogy with the corresponding result for the usual dynamic construction, as established

in the proof of theorem 1, we show that the field resulting from the aforegiven (GE) construc-

tion does coincide in law with the contour ensemble AUD
and, consequently, with ÂUD

upon

choosing with probability 1/2 one of the two possible colourings.

Theorem 3

The random contour ensemble resulting from the aforementioned construction (GE) coincides in

law with AUD
.

Proof. To verify the statement of the theorem, we choose some c∈CD(T ) and compute

the probability that the colour-blind contour ensemble c is obtained as a result of the afore-

mentioned construction. To this end, we observe the following.

• Each edge e ∈ E(c) containing the anchor point A(l[e]) in its interior yields a factor

pl[e]/(1+pl[e]) (line birth) times
∏

l∈T , l 6∼e(1−pl ) (no direction updates along e).
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• Each of the two edges e1, e2 ∈E(c) stemming from a common interior birth site n(l1, l2)

yields a factor pli , i =1, 2 (coming from the birth probability) times
∏

i

∏

l∈T , l 6∼e(1−pl )

(no direction updates along ei).

• Each of the edges e ∈E(c) arising as a result of a direction update yields a factor pl[e]

(direction update probability) times
∏

l∈T , l 6∼e(1−pl ) (no direction updates along e).

• The absence of birth sites at nodes n(l1, l2) of T in D not belonging to c yields the

factor
∏

n(l1 , l2)∈D\c(1−pl1
pl2

) (note that birth sites are allowed in all points of c – either

they give rise to lines tracing c or are discarded if hit by a previously born line).

• The absence of line births at those anchor points A(l), l ∈T , which do not give rise to

an edge of c yields the factor
∏

l∈T , l∩D 6=∅,A(l)6∈c(1+pl )
−1.

Putting these factors together allows us to evaluate the probability of c arising as a result of

the (GE) construction as:

(

∏

e∈E(c)

pl[e]

)(

∏

e∈E(c)

∏

l∈T , l 6∼e

(1−pl )

)(

∏

n(l1 , l2)∈c

(1−pl1
pl2

)

)−1(
∏

n(l1 , l2)∈D

(1−pl1
pl2

)

)

×
(

∏

l∈T , l∩D 6=∅

1

1+pl

)

=
2 exp(−UD(ĉ))

Z[UD]

∏

e∈E(c)

pl[e] (8)

in full analogy to (7) with Z[UD] given by (6). This completes the proof as in the argument

establishing the dynamic representation in theorem 1.

7. Path creation and annihilation dynamics for general polygonal fields

The purpose of the present section is to use the generalized dynamic representation to construct

dynamics on the space of polygonal configurations in a spirit similar to the derivation of

the disagreement loop dynamics from the basic Arak and Surgailis’ dynamic representation

discussed previously in section 4. This means in particular that the path creation and annihi-

lation procedure is a direct generalization of the disagreement loop dynamics; there are good

reasons, though, to treat the disagreement loop procedure separately, as it is usually less

complex from a computational viewpoint owing to the particularly simple nature of the

anchor mapping A(l)= in(l, D). Also, as we shall see next, the main advantage of choosing

the family Dt different from the one corresponding to the Arak and Surgailis’ construction

relies on the particular form of line birth events, whereas the vertex birth Monte-Carlo moves

are equally well generated by the simpler disagreement loop dynamics. It should be noted

here that further interest in the generalized dynamic representation stems from its theoretical

implications, see Schreiber (2008), giving an insight into the higher-order correlation

structure of the field, which falls beyond the scope of the present application-oriented article.

To proceed towards the so-posed objective, we note first that, in full analogy with the DL

dynamics given before, adding a new line birth site for l ∈T at its anchor point l as specified

in (GE:LineBirth) and letting it evolve thereupon according to the rules of the (GE) dynamics

under the same coupling as for DL, yields a disagreement loop/path as the symmetric

difference between the previous configuration c and the new one c ⊕Dt l, where ⊕Dt is the

line creation operator corresponding to the choice of (Dt)t∈[0,1]. Likewise, annihilating a line

birth site, with the corresponding operator denoted by ⊖Dt , yields under the usual coupling a

disagreement loop/path as well. Clearly, disagreement paths or loops are also obtained upon

adding or removing a vertex, with the corresponding operators denoted again by ⊕Dt and

⊖Dt with no ambiguity arising between the line creation and annihilation operators which

can be distinguished by the different nature of their right argument.
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It should be noted at this point that the so-defined operations may result in a disagreement

loop wrapping around the growing window Dt, with its two branches meeting and annihilating

on the other side – a careful reader might wonder at this point whether such a geometry of

a disagreement loop does not imply that its parts evolve backwards in time. The answer is

always no, which formally follows by the construction of the dynamics, yet the more intui-

tive explanation stems from the fact that, unlike in the original space-time dynamics discussed

in the proof of theorem 1, here we in general do not have globally defined time axis and

spatial axis – on the contrary, the time flow direction may vary from point to point and is

determined by the local normal direction to the boundary of Dt.

Consider the following path creation and annihilation Markovian (PCA) dynamics in

continuous time:

PCA:CreateLine For each l ∈T , with intensity pl /(1+pl ) ds, set cs +ds := cs ⊕Dt l.

PCA:AnnihilateLine For each l ∈T such that A(l)∈c, with intensity 1, set cs +ds := cs ⊖Dt l.

PCA:CreateVertex For each x : =n(l1, l2) ∈ D, l1, l2 ∈ T , with intensity pl1
pl2

ds, set

cs +ds := cs ⊕Dt x.

PCA:AnnihilateVertex For each interior birth site x in cs, with intensity 1, set

cs +ds := cs ⊖Dt x.

In full analogy with proposition 1 we get proposition 2.

Proposition 2

The distribution of the consistent colour-blind polygonal field AUD
is the unique invariant law

of the PCA dynamics. The resulting stationary process is reversible. Moreover, for any initial

distribution of c0 the laws of the random polygonal fields cs converge in variational distance to

the law of AUD
as s →∞.

Clearly, a version of this dynamics can be constructed for general polygonal fields with

Hamiltonian UD +HD for some HD : ĈD(T )→R. To this end, we regard the PCA dynamics

as a generator of update proposals, which are then accepted with probability 1 if HD

decreases and with probability exp(−DHD) otherwise, where DHD is the increase in HD. To

put it in formal terms, proceed as follows:

PCA[H] Given ĉs generate an update proposal d for cs +ds, colour it randomly in one

of two possible ways with probability 1/2 each, thus obtaining the coloured

update proposal d̂. Now, if HD(d̂) <HD(ĉs), set ĉs +ds := d̂, otherwise set ĉs +ds := d̂

with probability exp(−[HD(d̂) − HD(ĉs)]) and keep ĉs +ds
= ĉs with the comple-

mentary probability.

Using proposition 2 and verifying the usual detailed balance conditions we come to

theorem 4.

Theorem 4

The distribution of the polygonal field ÂHD +UD
is the unique invariant law of the dynamics

PCA[H]. The resulting stationary process is reversible. Moreover, for any initial distribution

of ĉ0 the laws of the random polygonal fields ĉs converge in variational distance to the law of

ÂUD +HD
as s →∞.

8. Image segmentation as a statistical inference problem

Here we recall the framework for Bayesian image interpretation using planar random field

priors (see, e.g. Chellapa & Jain, 1993).
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Let the data consist of some discretized grey-level image. Write S for the set of sites and

L ={0, . . ., 255} for the label set. Formally, an image is a vector y = (y1)1∈S with y1 ∈ L. As

before, assume that D is a bounded, convex and open subset of R
2. We will impose the

further constraint that D contains S.

In the Bayesian setting, the task of segmenting y into foreground and background regions

is formulated as a statistical parameter estimation problem. As the aim is to interpret y in

terms of a black-and-white-coloured polygonal configuration, we seek to find a ĉ∗ ∈ ĈD(T )

that explains the data ‘best’ in the sense of having a small misclassification rate as well as

exhibiting desirable ‘smoothness’ properties. The former aspect is captured in the likelihood ,

the latter in the prior. Inference is based on the posterior polygonal field distribution

exp
(

−Y
y,b
D,S(ĉ)

)

Z[Y
y,b
D,S ]

∏

e∈E(c)

pl[e] (9)

on ĈD(T ) given y with

Y
y,b
D,S(ĉ)=UD(ĉ)+bXD,S(ĉ; y), ĉ∈ ĈD(T ), (10)

for inverse temperature b> 0, and partition function

Z[Y
y,b
D,S ]=

∑

ĥ∈CD(T )

exp(−Y
y,b
D,S(ĥ))

∏

e∈E(h)

pl[e].

Thus, (9) is a law of the form (1) with a Hamiltonian that is a weighted sum of two terms:

a prior UD(ĉ) given by (5) balanced by a term XD,S(ĉ; y) that describes the goodness-of-fit

between the coloured configuration ĉ and the data y. Observe that (9) can also be regarded

as the (posterior) distribution of a classical Gibbs field on X̂D(T ), the space consisting of all

binary colourings of DT , with a Hamiltonian of the form (4),

WD(ĉ)=

{

Y
y,b
D,S(ĉ)−∑e∈E(c) log pl[e], ĉ∈ ĈD(T ),

+∞, otherwise.
(11)

In the examples to be presented in section 9, we shall use the ‘misclassification rate’

XD,S(ĉ; y)=
1

nS

∑

1∈S

∣

∣

∣

y1

255
− ĉ[1]

∣

∣

∣
, (12)

where ĉ[1] ∈{0, 1} denotes the (normalized) colour of ĉ at pixel 1, and nS is the number of

pixels. Note that as D contains S, ĉ[1] is well defined.

Upon observation of y, our goal is to estimate the underlying coloured polygonal configu-

ration by Hamiltonian optimization. More specifically, we use the simulated annealing algo-

rithm (Geman & Geman, 1984; Haario & Saksman, 1991) and let b↑∞ to find the polygonal

configurations ĉ∗ having minimal misclassification rate while keeping the hyperparameters pl[e]

for line desirability fixed.

9. Examples

In this section, we present results produced by our C++ implementation of the aforemen-

tioned algorithms on toy and real-life examples. The model (9) was used with components
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(5) and (12). We used a combination of the DL[H]:birth–death algorithm of section 5 and

the PCA[H] dynamics of section 7 (with the window Dt initiating its growth in the middle

of a randomly chosen edge and growing as its parallel rectangle thereupon) combined with

the usual local basic polygon recolourings constituting the core of the standard simulation

algorithms for lattice-indexed Gibbs–Markov fields (see, e.g. Winkler, 2003). Path creation

and annihilation, being global in nature, is useful in the beginning of the simulated annealing

procedure, as are the disagreement loop updates. In later stages of the simulation they are

complemented with local polygon updates to take care of fine details.

We applied simulated annealing, treating (5) as the Hamiltonian of the reference distribu-

tion, and a linear cooling schedule that amounts to setting b equal to the number of iterates

divided by 60. For the family T we chose a random non-homogeneous gas of lines with

intensity determined by the gradient field of the processed image and interacting by hard-

core exclusions within a fixed distance. More precisely, new line proposals were generated by

• choosing a random point in the image domain with density proportional to gradient

length,

• choosing the new line direction perpendicular to the gradient vector,

• accepting the line whenever it is far enough from the ones already present, with the

distance between lines identified with the distance between their points closest to the

origin.

Moreover, lines were also removed with constant intensity and the system was allowed to

relax towards equilibrium (for a short time). We decided to apply this computationally

inexpensive relaxation scheme because theoretically the equilibrium gas should ensure better

packing effectiveness and regularity than the simpler random sequential packing process. In

practice, the choice between equilibrium packing and random sequential packing seems to

have no effect on the overall performance of our software. However, an important improve-

ment of the segmentation performance was achieved by making the line activity parameters

pl , l ∈T , proportional to the absolute gradient flux through l; in fact this has been pushed

further in our implementation and local activities ascribed to edges rather than lines were

tested with a good effect.

The general conclusion from the simulations discussed next is that the right choice of

tessellation is crucial for a good performance of our algorithm. The present random

tessellation-generating mechanism has the property of producing quite reasonable tessellations,

among which very good and very bad ones do happen sometimes. This leads to striking

differences of segmentation performances between subsequent simulation runs with the same

parameters and the same picture processed, see the following examples. Consequently, our

present active research effort is concentrated on developing a good picture-driven tessellation-

generating mechanism well integrating with the polygonal field set-up and replacing the

ad hoc gradient-driven equilibrium line packing as applied so far. The envisioned results will

be presented in a separate paper.

Our present software was first tested on synthetic images. At each iteration, the disagree-

ment loop dynamics were chosen with probability 0.85, path creation and annihilation with

probability 0.05, leaving probability 0.1 for local polygon updates. Approximately 12,500

Monte-Carlo updates were carried out per second of simulation time on an Intel Pentium

M 2 GHz with 2 GB RAM memory. Each resulting segmentation is presented together with

the underlying tessellation and the number of updates as well as the pixel misclassification

rate (PMR) reached are given. The target PMR was set to 0.03 and the maximal number of

iterates was 750,000 corresponding to about 1 minute simulation time.
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Figure 2 (left) shows a blurry ‘A’ overlaid on the segmentation result obtained after 478,000

steps (92,000 updates accepted) with the target misclassification rate of 0.03 reached. The

corresponding tessellation is shown on the right-hand side of the figure.

Figure 3 (left) is the result after 260,000 iterations (45,000 accepted updates) on a ‘B’ with

the target of 0.03 PMR achieved. The underlying tessellation is shown in Fig. 3 (right).

Further, in Fig. 4 (left) we show the result of another, less successful run of the software,

on the same picture and with the same parameters – the source of trouble was that the under-

lying random tessellation, as seen in the right of the figure, did not contain lines needed to

mark the horizontal inner bar of the letter ‘B’. The achieved misclassification rate was 0.038

after 750,000 steps (132,000 accepted updates).

Fig. 2. Segmented letter A (left) and the underlying tessellation (right).

Fig. 3. Segmented letter B (left) and the underlying tessellation (right).
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Also, we used grey-level images from the Berkeley Segmentation Dataset and Bench-

mark web-site (http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/)

to evaluate our approach, as well as images from the PASCAL Network of Excellence chal-

lenge 2006 (http://www.pascal-network.org/challenges/VOC/thumbs/VOC2006/index1.html).

Figure 5 (left) depicts a cat. The target 0.03 PMR was obtained after 194,000 steps (40,000

accepted updates). The corresponding tessellation is shown in the right-hand side of the figure.

Finally, Fig. 6 shows a picture of a mushroom against a bushy background, with the

segmentation result obtained after 750,000 steps (100,000 accepted updates). This picture

turned out to be significantly more difficult and the PMR achieved was 0.067.

The discrete nature of polygonal fields defined using tessellations implies that, unless the

tessellation is properly chosen, it is not possible in principle to follow exactly the outline of

the foreground object. This is why the tessellation choice is so crucial. However, the state

Fig. 4. Another segmentation of B (left) and the underlying tessellation (right).

Fig. 5. Segmented image of a cat (left) and the tessellation (right).

 2010 Board of the Foundation of the Scandinavian Journal of Statistics.



Scand J Statist 37 Dynamics for binary planar Markov fields 283

Fig. 6. Segmented image of a mushroom (left) and the tessellation (right).

space of the annealing algorithm is much reduced, resulting in a faster procedure than that

described for the continuum models by Kluszczyński et al. (2005, 2007).

10. Discussion and conclusion

In this article, we presented a class of Gibbs fields on finite graphs generated by regular tes-

sellations, which can be interpreted as discretizations of the consistent polygonal Markov

fields introduced by Arak & Surgailis (1989). We showed that these fields enjoy a number of

striking properties (including consistency, solvability and Markovianity) similar to those of

the continuous polygonal Markov fields by which their definition was inspired. In particu-

lar, a dynamic representation can be constructed, which may be used to design simulation

algorithms based on disagreement loops as well as PCA. By addition of a Hamiltonian that

measures the goodness-of-fit by an Lp criterion, the model and techniques were applied to

the image analysis problem of foreground–background separation.

It should be noted that, in contrast to the definition of a usual Markov random field, we

have excluded X-shaped nodes, as doing so allows us to obtain a neat theory and avoids

ambiguity in distinguishing the contours that comprise a polygonal configuration. The con-

dition can easily be lifted, though, with only a few differences to the theory.

• In the dynamic construction developed in section 3 we admit births of new particles

also at sites where a prior collision occurred.

• The Hamiltonian UD(ĉ) gets an extra term − log(1 −pl1
pl2

) for each particle collision

(death) site n(l1, l2) ∈ D of c at which no new particle is born – this extra term takes

into account the probability of not having an X-shaped node (not observing a new

birth) at the death site v(l1, l2), which is 1 − pl1
pl2

. Unfortunately, the so-modified

Hamiltonian becomes dependent on the choice of the coordinate system (spatial and

time axes) unlike the original Hamiltonian in (5); this is because the notion of the birth

site does depend on the direction of the time flow.

The algorithms proposed in this article can be modified accordingly. Clearly, if a rich enough

collection T is used, the choice to include or exclude X-shaped nodes hardly matters for

segmentation purposes.
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Exploration of the full potential of the class of consistent polygonal fields built on finite

tessellations is beyond the scope of the present article and part of our work in progress. In

particular, the choice of the collection T and the assignment of probabilities pl to each l ∈T

remains as subject of further study. From the perspective of image segmentation, it would be

of particular interest to base the choice of tessellation on gradient information. Indeed, as

edges lie at the boundaries between more or less homogeneous regions, they are characterized

by abrupt changes in intensity values, and contain valuable information about the structures

and objects present in the image. Hence, computation of the edge map of an image is useful,

as the amount of data that needs to be stored may be greatly reduced, while preserving most

of the information of interest (Rosenfeld & Kak, 1982). The Canny (1986) filter is widely

regarded as the best general purpose edge detector, designed to combine high signal-to-noise

ratio and precise localization and composed of Gaussian smoothing, Sobel filter, non-

maximum suppression and hysteresis steps.

We believe that foreground–background separation is not the only application for which

the models and techniques discussed in this article can be applied. As the Arak (1982)

process can be extended to allow for more than two colour labels (Arak & Surgailis, 1991;

Kluszczyński et al., 2007), so is it of interest to explore their discrete counterparts for

multi-class segmentation (current work in progress).

Another application area is the detection of linear features such as road networks or edges

from image data. Several marked point process models have been proposed as prior distri-

butions for this task (Stoica, 2001; van Lieshout & Stoica, 2003; Lacoste, 2004). However,

being defined by a density with respect to a Poisson process, such line segment models are

not capable of reproducing such characteristics of real-life images as an abundance of paral-

lel lines, joined endpoints or preferred angles of crossing. Consistent discrete polygonal field

models, in contrast, are. Related, somewhat easier, conditional simulation problems occur in

cognitive experiments aimed at understanding the human visual system.
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